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Introduction
to the problem
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Are lists evil?–Bjarne Stroustrup

https://isocpp.org/blog/2014/06/stroustrup-lists
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Array

Random access is fast
Insertion/extraction are... slow
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Linked list

Insertion/extraction are fast
Random access is... sloooow
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How to compare them?
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Jon Bentley’s suggestion
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Jon Bentley’s suggestion

“Insert a sequence of random integers
into a sorted sequence,

then remove those elements one by one
as determined by

a random sequece of positions”
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Results
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Conclusion

Vectors are faster
by some fixed proportion
(a considerable proportion)

But...
Are we really interested
in Jon Bentley’s problem?
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Super Tree
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Augmented tree (messed up)

Like a list, but with two “next”s (left, and right)
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Augmented tree

Special metadata: number of nodes in the sub-tree
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Random access (1/3)

template <typename T>
struct node
{

node <T> * left; // Left sub -tree
node <T> * right; // Right " "
std :: size_t count; // Num. of nodes
T value; // Payload

};
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Random access (2/3)

template <typename T>
node <T> * RandomAccess (node <T> * root ,

std :: size_t pos)
{

if (pos >= root ->count)
return nullptr ;

node <T> * p = root;
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Random access (3/3)

for (;;)
{

std :: size_t nLeft = p->left ?
p->left ->count : 0;

if (pos == nLeft) return p;
else if (pos < nLeft) p = p->left;
else // (pos > nLeft)
{

pos -= nLeft + 1;
p = p->right;

} } } // end
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Proportional view
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Computational complexity

Random Insertion/ Sum of
access Extraction both

Array O(1) O(N) O(N)

List O(N) O(1) O(N)

Super Tree O(log(N)) O(log(N)) O(log(N))
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Computational complexity (legend)

O(1) = constant
O(log(N)) = logarithmic
O(N) = linear
O(N log(N)) = “linearithmic”
O(Nc) = polinomic
O(cN) = exponential
O(N!) = factorial

N: size of the problem, c: constant > 1
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Computational complexity

Random Insertion/ Sum of
access Extraction both

Array

List

Super Tree
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Computational complexity

(1 rand. access
+ 1 ins./extr.) ×N = total

Array

List

Super Tree
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Results (1/3) — few elements
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Results (2/3) — many elements
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Results (3/3) — logarithmic scale
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Ideal for the beach
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Non proportional
view
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Legend in proportional view
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Legend in non proportional view
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Sum in non proportional view
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Non proportional view
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Applications
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Text editor

Sequence of lines
Number of bytes
Number of lines after word wrap
Number of characters
If not plain text, number of pixels

gtk
“Ad hoc” B+ tree with number of characters and lines
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Robot arm or chain of molecules

Sequence of traslation and rotation transformations
Non proportional view operation:
matrix sum and product
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Disk version: shiftable_files

Implementation based on memory mapped files
Horrible code (macros!)
Metadata contained in the same file
At closing time, choose:

1 Recompact the file, or...
2 leave it as is, with the metadata

How to keep track of the sections?
Using an in-memory sequence with non proportional view
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Editing giant XML files

A first pass can build an in-memory index (not
necessarily complete)
You can insert/extract nodes without rewriting the
whole file
You must keep the index updated, of course
Recompact at closing?

1 Yes: it becomes a normal XML again
2 No: faster
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Similar proposals
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Multi Index (1/2)

boost :: multi_index_container
<

T,
boost :: multi_index :: indexed_by
<

boost :: multi_index :: ranked_non_unique
<

boost :: multi_index :: identity <T>,
unordered_less <T>

>
>

>
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Multi Index (2/2)

template < typename T>
struct unordered_less
{

bool operator () (const T &,
const T &) const

{
return false;

}
};
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Similar proposals in Boost (1/2)

2004 – The oldest mention (I don’t know if
implemented), by Peter Palotas
http://lists.boost.org/Archives/boost/2004/03/62823.php

2006 – “Hierarchical Data Structures” by Bernhard
Reiter and René Rivera
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2006/n2101.html#tr.hierarchy.augment

2006 – “AVL Array” (horrible name, I know)
http://sourceforge.net/projects/avl-array

“Rank List” after debate in Boost forum
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Similar proposals in Boost (2/2)

2012 – Countertree by Vadim Stadnik
http://dl.dropbox.com/u/8437476/works/

countertree/doc/index.html (broken link)
2015 – SegmentedTree by Chris Clearwater
https://det.github.io/segmented_tree/



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals not in Boost

“Simon Tatham’s Algorithms Page”
https://www.chiark.greenend.org.uk/

˜sgtatham/algorithms/cbtree.html

“Counted B-trees: An enhancement to the well
known B-tree algorithms to allow you to look up
items in the tree by numeric index, or to find
the numeric index of an item. Useful for finding
percentiles, [...]”
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Similar proposals in Python

https://pypi.python.org/pypi/rbtree
https://pypi.python.org/pypi/pyavl
https://pypi.python.org/pypi/blist
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Let’s think about it
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Thanks a lot
Any questions?


