
Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Look at that sequence... Is it a vector? Is it a list?

No! It’s a Super Tree!!

Martín Knoblauch Revuelta
http://www.mkrevuelta.com @mkrevuelta mkrevuelta@gmail.com

indizen using std::cpp

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/4.0/

Universidad Carlos III de Madrid, November the 30th 2017

http://www.mkrevuelta.com
http://creativecommons.org/licenses/by-nc-sa/4.0/


Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Presentation available in my semiabandoned blog:
http://www.mkrevuelta.com

http://www.mkrevuelta.com


Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Index

1. The problem

2. Super Tree

3. Non proportional view

4. Applications

5. Similar proposals

6. Let’s think about it



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Introduction
to the problem



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Are lists evil?–Bjarne Stroustrup

https://isocpp.org/blog/2014/06/stroustrup-lists



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Array

Random access is fast
Insertion/extraction are... slow



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Linked list

Insertion/extraction are fast
Random access is... sloooow



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

How to compare them?



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Jon Bentley’s suggestion



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Jon Bentley’s suggestion

“Insert a sequence of random integers
into a sorted sequence,

then remove those elements one by one
as determined by

a random sequece of positions”



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Results



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Conclusion

Vectors are faster
by some fixed proportion
(a considerable proportion)

But...
Are we really interested
in Jon Bentley’s problem?



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Super Tree



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Augmented tree (messed up)

Like a list, but with two “next”s (left, and right)



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Augmented tree

Special metadata: number of nodes in the sub-tree



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Random access (1/3)

template <typename T>
struct node
{

node <T> * left; // Left sub -tree
node <T> * right; // Right " "
std :: size_t count; // Num. of nodes
T value; // Payload

};



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Random access (2/3)

template <typename T>
node <T> * RandomAccess (node <T> * root ,

std :: size_t pos)
{

if (pos >= root ->count)
return nullptr ;

node <T> * p = root;



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Random access (3/3)

for (;;)
{

std :: size_t nLeft = p->left ?
p->left ->count : 0;

if (pos == nLeft) return p;
else if (pos < nLeft) p = p->left;
else // (pos > nLeft)
{

pos -= nLeft + 1;
p = p->right;

} } } // end



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Computational complexity

Random Insertion/ Sum of
access Extraction both

Array O(1) O(N) O(N)

List O(N) O(1) O(N)

Super Tree O(log(N)) O(log(N)) O(log(N))



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Computational complexity (legend)

O(1) = constant
O(log(N)) = logarithmic
O(N) = linear
O(N log(N)) = “linearithmic”
O(Nc) = polinomic
O(cN) = exponential
O(N!) = factorial

N: size of the problem, c: constant > 1



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Computational complexity

Random Insertion/ Sum of
access Extraction both

Array

List

Super Tree



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Computational complexity

(1 rand. access
+ 1 ins./extr.) ×N = total

Array

List

Super Tree



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Results (1/3) — few elements



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Results (2/3) — many elements



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Results (3/3) — logarithmic scale



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Ideal for the beach



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Non proportional
view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Legend in proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Legend in non proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Sum in non proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Non proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Applications



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Text editor

Sequence of lines
Number of bytes
Number of lines after word wrap
Number of characters
If not plain text, number of pixels

gtk
“Ad hoc” B+ tree with number of characters and lines



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Robot arm or chain of molecules

Sequence of traslation and rotation transformations
Non proportional view operation:
matrix sum and product



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Disk version: shiftable_files

Implementation based on memory mapped files
Horrible code (macros!)
Metadata contained in the same file
At closing time, choose:

1 Recompact the file, or...
2 leave it as is, with the metadata

How to keep track of the sections?
Using an in-memory sequence with non proportional view



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Editing giant XML files

A first pass can build an in-memory index (not
necessarily complete)
You can insert/extract nodes without rewriting the
whole file
You must keep the index updated, of course
Recompact at closing?

1 Yes: it becomes a normal XML again
2 No: faster



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Multi Index (1/2)

boost :: multi_index_container
<

T,
boost :: multi_index :: indexed_by
<

boost :: multi_index :: ranked_non_unique
<

boost :: multi_index :: identity <T>,
unordered_less <T>

>
>

>



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Multi Index (2/2)

template < typename T>
struct unordered_less
{

bool operator () (const T &,
const T &) const

{
return false;

}
};



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals in Boost (1/2)

2004 – The oldest mention (I don’t know if
implemented), by Peter Palotas
http://lists.boost.org/Archives/boost/2004/03/62823.php

2006 – “Hierarchical Data Structures” by Bernhard
Reiter and René Rivera
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2006/n2101.html#tr.hierarchy.augment

2006 – “AVL Array” (horrible name, I know)
http://sourceforge.net/projects/avl-array

“Rank List” after debate in Boost forum



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals in Boost (2/2)

2012 – Countertree by Vadim Stadnik
http://dl.dropbox.com/u/8437476/works/

countertree/doc/index.html (broken link)
2015 – SegmentedTree by Chris Clearwater
https://det.github.io/segmented_tree/



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals not in Boost

“Simon Tatham’s Algorithms Page”
https://www.chiark.greenend.org.uk/

˜sgtatham/algorithms/cbtree.html

“Counted B-trees: An enhancement to the well
known B-tree algorithms to allow you to look up
items in the tree by numeric index, or to find
the numeric index of an item. Useful for finding
percentiles, [...]”



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Similar proposals in Python

https://pypi.python.org/pypi/rbtree
https://pypi.python.org/pypi/pyavl
https://pypi.python.org/pypi/blist



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Let’s think about it



Intro Super Tree Non proportional view Applications Similar proposals Let’s think about it

Thanks a lot
Any questions?


